RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2015 Volume 6, Issue 2, Pages 280–293 (Mi nano943)

This article is cited in 2 papers

Universality of the discrete spectrum asymptotics of the three-particle Schrödinger operator on a lattice

Mukhiddin I. Muminova, Tulkin H. Rasulovb

a Faculty of Scince, Universiti Teknologi Malaysia (UTM) 81310 Skudai, Johor Bahru, Malaysia
b Faculty of Physics and Mathematics, Bukhara State University M. Ikbol str. 11, 200100 Bukhara, Uzbekistan

Abstract: In the present paper, we consider the Hamiltonian $H(K)$, $K\in\mathbb T^3:=(-\pi,\pi]^3$ of a system of three arbitrary quantum mechanical particles moving on the three-dimensional lattice and interacting via zero range potentials. We find a finite set $\Lambda\subset \mathbb T^3$ such that for all values of the total quasi-momentum $K\in\Lambda$ the operator $H(K)$ has infinitely many negative eigenvalues accumulating at zero. It is found that for every $K\in\Lambda$, the number $N(K;z)$ of eigenvalues of $H(K)$ lying on the left of $z$, $z<0$, satisfies the asymptotic relation $\lim\limits_{z\to-0}N(K;z)\bigl|\log|z|\bigr|^{-1}=\mathcal U_0$ with $0<\mathcal U_0<\infty$, independently on the cardinality of $\Lambda$.

Keywords: three-particle Schrödinger operator, zero-range pair attractive potentials, Birman–Schwinger principle, the Efimov effect, discrete spectrum asymptotics.

PACS: 02.30.Tb

Received: 18.01.2015

Language: English

DOI: 10.17586/2220-8054-2015-6-2-280-293



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024