RUS  ENG
Full version
JOURNALS // Russian Journal of Nonlinear Dynamics // Archive

Nelin. Dinam., 2013 Volume 9, Number 4, Pages 627–640 (Mi nd410)

This article is cited in 3 papers

Geometrization of the Chaplygin reducing-multiplier theorem

A. V. Bolsinovab, A. V. Borisovcad, I. S. Mamaevacd

a Laboratory of nonlinear analysis and the design of new types of vehicles, Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b School of Mathematics, Loughborough University, United Kingdom, LE11 3TU, Loughborough, Leicestershire
c A. A. Blagonravov Mechanical Engineering Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia

Abstract: This paper develops the theory of the reducing multiplier for a special class of nonholonomic dynamical systems, when the resulting nonlinear Poisson structure is reduced to the Lie–Poisson bracket of the algebra $e(3)$. As an illustration, the Chaplygin ball rolling problem and the Veselova system are considered. In addition, an integrable gyrostatic generalization of the Veselova system is obtained.

Keywords: nonholonomic dynamical system, Poisson bracket, Poisson structure, reducing multiplier, Hamiltonization, conformally Hamiltonian system, Chaplygin ball.

UDC: 531.8, 517.925

MSC: 37J60, 37J35, 70E18, 53D17

Received: 19.09.2012
Revised: 22.11.2012



© Steklov Math. Inst. of RAS, 2024