Abstract:
The motion of a time-periodic two-degree-of-freedom Hamiltonian system in the neighborhood of the equilibrium being stable in the linear approximation is considered. The weak Raman thirdorder resonance and the strong fourth-order resonance are assumed to occur simultaneously in the system. The behavior of the approximated (model) system is studied in the stability domain of the fourth-order resonance. Areas of the parameters (coefficients of the normalized Hamiltonian) are found for which all motions of the system are bounded if they begin in a sufficiently small neighborhood of the equilibrium. Boundedness domain estimate is obtained. À disturbing effect of the double resonance on the motion of the system within the boundedness domain is described.
Keywords:Hamiltonian system, canonical transformation, method of normal forms, double resonance, stability.