Abstract:
M. Herman showed that the invariant measure $\mu_h$ of a piecewise linear (PL) circle homeomorphism $h$ with two break points and an irrational rotation number $\rho_{h}$ is absolutely continuous iff the two break points belong to the same orbit. We extend Herman's result to the class P of piecewise $ C^{2+\varepsilon} $-circle maps $f$ with an irrational rotation number $\rho_f$ and two break points $ a_{0}, c_{0}$, which do not lie on the same orbit and whose total jump ratio is $\sigma_f=1$, as follows: if $\mu_f$ denotes the invariant measure of the $P$-homeomorphism $f$, then for Lebesgue almost all values of $\mu_f([a_0, c_{0}])$ the measure $\mu_f$ is singular with respect to Lebesgue measure.
Keywords:piecewise-smooth circle homeomorphism, break point, rotation number, invariant measure.