RUS  ENG
Full version
JOURNALS // Russian Journal of Nonlinear Dynamics // Archive

Rus. J. Nonlin. Dyn., 2020 Volume 16, Number 3, Pages 463–477 (Mi nd722)

This article is cited in 7 papers

Nonlinear physics and mechanics

Comparison Between the Exact Solutions of Three Distinct Shallow Water Equations Using the Painlevé Approach and Its Numerical Solutions

A. Bekira, M. S. M. Shehatab, E. H. M. Zahranc

a Neighbourhood of Akcaglan, Imarli Street Number: 28/4, 26030, Eskisehir, Turkey
b Zagazig University, Faculty of Science, Departments of Mathematics, 44519, Zagazig, Egypt
c Benha University, Faculty of Engineering, Departments of Mathematical and Physical Engineering Fareed Nada Street, 13511, Shubra, Egypt

Abstract: In this article, we employ the Painlevé approach to realize the solitary wave solution to three distinct important equations for the shallow water derived from the generalized Camassa – Holm equation with periodic boundary conditions. The first one is the Camassa – Holm equation, which is the main source for the shallow water waves without hydrostatic pressure that describes the unidirectional propagation of waves at the free surface of shallow water under the influence of gravity. While the second, the Novikov equation as a new integrable equation, possesses a bi-Hamiltonian structure and an infinite sequence of conserved quantities. Finally, the third equation is the (3 + 1)-dimensional Kadomtsev – Petviashvili (KP) equation. All the ansatz methods with their modifications, whether they satisfy the balance rule or not, fail to construct the exact and solitary solutions to the first two models. Furthermore, the numerical solutions to these three equations have been constructed using the variational iteration method.

Keywords: Camassa – Holm equation, Novikov – Veselov equation, (3 + 1)-dimensional Kadomtsev – Petviashvili (KP) equation, Painlevé approach, traveling wave solutions, numerical solutions.

MSC: 35C07, 35C08, 35R11, 83C15

Received: 04.08.2020
Accepted: 26.08.2020

Language: English

DOI: 10.20537/nd200305



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024