Abstract:
A new energy-enstrophy model for the equilibrium statistical mechanics of barotropic flow on a sphere is introduced and solved exactly for phase transitions to quadrupolar vortices when the kinetic energy level is high. Unlike the Kraichnan theory, which is a Gaussian model, we substitute a microcanonical enstrophy constraint for the usual canonical one, a step which is based on sound physical principles. This yields a spherical model with zero total circulation, a microcanonical enstrophy constraint and a canonical constraint on energy, with angular momentum fixed to zero. A closed-form solution of this spherical model, obtained by the Kac – Berlin method of steepest descent, provides critical temperatures and amplitudes of the symmetry-breaking quadrupolar vortices. This model and its results differ from previous solvable models for related phenomena in the sense that they are not based on a mean-field assumption.