RUS  ENG
Full version
JOURNALS // Russian Journal of Nonlinear Dynamics // Archive

Rus. J. Nonlin. Dyn., 2021 Volume 17, Number 2, Pages 157–164 (Mi nd747)

Mathematical problems of nonlinearity

On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors

Y. V. Bakhanova, A. A. Bobrovsky, T. K. Burdygina, S. M. Malykh

National Research University “Higher School of Economics”, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia

Abstract: We study spiral chaos in the classical Rössler and Arneodo –Coullet –Tresser systems. Special attention is paid to the analysis of bifurcation curves that correspond to the appearance of Shilnikov homoclinic loop of saddle-focus equilibrium states and, as a result, spiral chaos. To visualize the results, we use numerical methods for constructing charts of the maximal Lyapunov exponent and bifurcation diagrams obtained using the MatCont package.

Keywords: Shilnikov bifurcation, spiral chaos, Lyapunov analysis.

MSC: 37G10, 37G35

Received: 20.05.2021
Accepted: 09.06.2021

Language: english

DOI: 10.20537/nd210202



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024