Abstract:
Inhomogeneous Fredholm's integral equations of the second kind are formulated, which describe the fields of TE and TM polarized waves in metallic films with allowance for the anomalous skin effect. The equations are solved numerically by the quadrature method. The electric fields in gold and aluminum films located on a silicon substrate and the angular dependences of the polarization angles of light reflected from the films are investigated. It is found that the solution of the inverse problem of multi-angle ellipsometry for metallic films using the standard model of the normal skin effect is characterized by instability of the reconstructed complex refractive index of the metal with a change in the thickness of the metallic film.
Keywords:metallic film, anomalous skin effect, integral equations, multi-angle ellipsometry.