RUS  ENG
Full version
JOURNALS // Optics and Spectroscopy // Archive

Optics and Spectroscopy, 2018 Volume 124, Issue 5, Pages 628–634 (Mi os1001)

This article is cited in 2 papers

Spectroscopy of condensed matter

Determining eigenfrequencies and homogeneous widths of lines of intermolecular vibrations in water and in aqueous solutions of hydrogen peroxide using Raman spectroscopy

A. V. Kraĭskiĭ, N. N. Mel'nik

P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991, Russia

Abstract: We have examined low-frequency Raman spectra of intermolecular vibrations of weak aqueous solutions of hydrogen peroxide and water. The differences between the observed Raman frequencies and the data from the literature on the IR-absorption frequencies of the same vibrations, as well as the interrelations between the frequencies and the widths of Lorentzian contours that approximate the vibrational spectra of the dynamic susceptibility, have been discussed. Based on a model of free damped vibrations of a classical oscillator with an inhomogeneous broadening, we have explained these effects for the first time. The homogeneous line widths and the damping times of the observed intermolecular vibrations have been determined. The eigenfrequencies of these vibrations have been calculated, and they have been shown to agree well with the data from the literature on the frequencies of IR absorption of water. We have shown that these parameters of intermolecular vibrations for water and for aqueous solutions of hydrogen peroxide differ from each other.

Received: 18.12.2017

DOI: 10.21883/OS.2018.05.45943.300-17


 English version:
Optics and Spectroscopy, 2018, 124:5, 660–667

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024