Abstract:
Photoluminescence spectroscopy (PL) has been used to study the optical properties of three-dimensional quantum-sized InGaPAs islands formed by substituting phosphorus by arsenic in an InGaP layer deposited on GaAs directly during epitaxial growth. PL line of the formed array of islands is in the range of 950–1000 nm at room temperature. Studies of PL in the temperature range 78–300 K indicate a significant inhomogeneity of the island array, the presence of nonradiative recombination centers, and carrier transport between islands. We observe in the photoluminescence excitation spectra a line associated with absorption in the residual two-dimensional InGaPAs layer. Annealing of the structures results in 300% increase of the PL intensity at room temperature with an insignificant short-wavelength shift of the island PL line, and also in improvement of the homogeneity within the island array.