Abstract:
This study deals with the determination of ratios of light metals (Li, Na, K, Mg, and Ca) in zooplankton (Calanus spp.) by calibration free laser-induced breakdown spectroscopy, assuming local thermodynamic equilibrium. The temperature of laser-induced plasma of zooplankton was derived from rotation-vibration bands of CN, and the electron density was calculated by Stark broadening of Mg I 383.23 nm, Li I 610.37 nm, and Ca II 396.85 nm lines. The synthetic spectra calculated with a radiation transport model for the experimental values of T and Ne were used for a selection of analytical atomic lines free from self-absorption. We compared the obtained data with the results of atomic emission and mass spectrometry with inductively coupled plasma. We also discussed the influence of ionization equilibrium on the accuracy of the results. We propose the presented method for direct semi-quantitative determination of Li, Mg, and Ca ratios in zooplankton.