Abstract:
To estimate the size of nanostructures in biological fluids and study the dynamics of their change, a modified method of laser correlation spectroscopy is proposed. The scheme of the hardware-software complex and the algorithm of the method are described, which allows one to achieve high accuracy in determining the size of nanoparticles, as well as to study the process of changing the size of nanoparticles in dynamics. The proposed hardware-software complex made it possible to study the dynamics of the formation of aggregates in human serum in the process of immune response. The results obtained indicate the presence of processes of rapid protein aggregation as a result of activation of the immune response. In addition, the size of the aggregates formed depends on the state of the immune system and the presence of diseases.