RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Probl. Anal. Issues Anal., 2014 Volume 3(21), Issue 2, Pages 32–51 (Mi pa181)

This article is cited in 2 papers

Analog of an inequality of Bohr for integrals of functions from $L^{p}(R^{n})$. II

B. F. Ivanov

Saint Petersburg State Technological University of Plant Polymers, Str. Ivan Chernykh, 4, 198095 Saint Petersburg, Russia

Abstract: Let $p\in(2,+\infty],$ $n\ge1$ and $\Delta=(\Delta_1,\ldots,\Delta_n),$ $\Delta_k>0,$ $1\le k\le n.$ It is proved that for functions $\gamma(t)\in L^p(R^n)$ spectrum of which is separated from each of $n$ the coordinate hyperplanes on the distance not less than $\Delta_k,$ $1\le k\le n$ respectively, the inequality is valid:
$$\left\|\int\limits_{E_t}\gamma(\tau)\,d\tau\right\| _{L^{\infty}(R^n)}\le C^n(q)\left[\prod_{k=1}^n\frac{1} {\Delta_k^{1/q}}\right]\left\|\gamma(\tau)\right\|_{L^p(R^n)},$$
where $t=(t_1,\ldots,t_n)\in R^n,$ $E_t=\{\tau\,|\,\tau=(\tau_1,\ldots,\tau_n)\in R^n,$ $\tau_j\in[0,t_j],$ if $t_j\ge0,$ and $\tau_j\in[t_j,0],$ if $t_j<0,\ 1\le j\le n\},$ and the constant $C(q)>0,$ $\displaystyle\frac{1}{p}+ \frac{1}{q}=1$ does not depend on $\gamma(\tau)$ and vector $\Delta$.

Keywords: inequality of Bohr.

MSC: 26D99

Received: 14.07.2014

Language: English

DOI: 10.15393/j3.art.2014.2569



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025