RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Probl. Anal. Issues Anal., 2018 Volume 7(25), Issue 1, Pages 3–22 (Mi pa222)

This article is cited in 2 papers

Pointwise multiplication in the realized homogeneous Besov and Triebel–Lizorkin spaces

Samira Bissar, Madani Moussai

Laboratory of Functional Analysis and Geometry of Spaces, Mohamed Boudiaf University of M'Sila, 28000 M'Sila, Algeria

Abstract: For either homogeneous Besov spaces $\dot B_{p,q}^s(\mathbb{R}^n)$ or homogeneous Triebel–Lizorkin spaces $\dot F_{p,q}^s(\mathbb{R}^n)$, with the conditions either $s < n/p$, or $s = n/p$ and $q \le 1$ in the $\dot B_{p,q}^s$-case, $p \le 1$ in the $\dot F_{p,q}^s$-case, we prove some pointwise multiplication assertions in their realized spaces.

Keywords: homogeneous Besov space; homogeneous Triebel–Lizorkin space; pointwise multiplication; realization.

UDC: 517.98

MSC: 46E35

Received: 07.11.2017
Revised: 09.02.2018
Accepted: 15.02.2018

Language: English

DOI: 10.15393/j3.art.2018.4170



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024