RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Probl. Anal. Issues Anal., 2018 Volume 7(25), Issue 1, Pages 23–40 (Mi pa225)

This article is cited in 2 papers

Approximative properties of Fourier–Meixner sums

R. M. Gadzhimirzaev

Dagestan Scientific Center RAS, 45, M. Gadzhieva st., Makhachkala, 367025, Russia

Abstract: We consider the problem of approximation of discrete functions $f=f(x)$ defined on the set $\Omega_\delta= \{0,\, \delta,\, 2\delta, \,\ldots\}$, where $\delta=\frac{1}{N}$, $N>0$, using the Fourier sums in the modified Meixner polynomials $M_{n, N}^\alpha(x)=M_n^\alpha(Nx)$ $(n = 0, 1, \dots)$, which for $\alpha> -1$ constitute an orthogonal system on the grid $\Omega_{\delta}$ with the weight function $\displaystyle w(x) = e^{-x}\frac{\Gamma(Nx+\alpha + 1)}{\Gamma(Nx + 1)}$. We study the approximative properties of partial sums of Fourier series in polynomials $M_{n, N}^\alpha(x)$, with particular attention paid to estimating their Lebesgue function.

Keywords: Meixner polynomials; Fourier series; Lebesgue function.

UDC: 517.521

MSC: 41A10

Received: 05.02.2018
Revised: 13.04.2018
Accepted: 16.04.2018

Language: English

DOI: 10.15393/j3.art.2018.4390



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024