RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2008 Issue 15, Pages 17–23 (Mi pa39)

The Sharp upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$

I. Naraniecka


Abstract: In this note we determine the exact value of max $\mathfrak{R}(A_{3}-\lambda A_{2}), \lambda \in \mathbb{R}$, within the linearly invariant family $U'_{\alpha}$ introduced by V. V. Starkov in [4]. For $\lambda = 0$ the sharp estimate for $|A_{3}|$ follows. If $\alpha = 1$ the corresponding result is valid for convex univalent functions in the unit disk.

UDC: 517

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024