RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Probl. Anal. Issues Anal., 2024 Volume 13(31), Issue 3, Pages 3–22 (Mi pa405)

Uncertainty principles and Calderón's formulas for the deformed Hankel $L^2_\alpha$-multiplier operators

A. Chana, A. Akhlidj

Laboratory of Fundamental and Applied Mathematics, Department of Mathematics and Informatics, Faculty of Sciences Ain Chock, University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco

Abstract: The main purpose of this paper is to introduce the deformed Hankel $L^2_\alpha$-multiplier operators and to give some new results related to these operators as Plancherel’s, Calderón's reproducing formulas and Heisenberg's, Donoho-Stark's uncertainty principles. Next, using the theory of reproducing kernels, we give best estimates and an integral representation of the extremal functions related to these operators on weighted Sobolev spaces.

Keywords: deformed Hankel transform, Calderón's reproducing formulas, extremal functions, Heisenberg's uncertainty principle, Donoho-Stark's uncertainty principle.

UDC: 517.44, 517.983

MSC: 42B10, 47G30, 47B10

Received: 22.06.2024
Revised: 25.09.2024
Accepted: 09.09.2024

Language: English

DOI: 10.15393/j3.art.2024.16330



© Steklov Math. Inst. of RAS, 2024