RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2005 Issue 12, Pages 3–12 (Mi pa57)

On metric space valued functions of bounded essential variation

M. Balcerzaka, M. Małolepszyb

a Technical University of Łódź, Institute of Mathematics
b Institute of Physics Lodz, University of Technology

Abstract: Let $\emptyset \ne T \subset \mathbb{R}$ and let $X$ be a metric space. For an ideal $\mathcal{J}\subset \mathcal{P}(T)$ and a function $f:T\to X$, we define the essential variation $V^{\mathcal{J}}_{ess}(f, T)$ as the in mum of all variations $V (g, T)$ where $g:T\to X, g = f$ on $T\setminus E$, and $E \in \mathcal{J}$. We show that if $X$ is complete then the essential variation of $f$ is equal to inf$\{V (f; T\setminus E) : E \in \mathcal{J}\}$. This extends former theorems of that type. We list some consequences that are analogues to the recent results by Chistyakov. Some examples of di erent kinds of essential variation are also investigated.

UDC: 517

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024