RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2002 Issue 9, Pages 35–42 (Mi pa80)

О неточностях в «точных» оценках для бигломорфных выпуклых отображений

P. Liczberskia, V. V. Starkovb

a Technical University of Łódź, Institute of Mathematics
b Petrozavodsk State University, Faculty of Mathematics

Abstract: In this paper there is considered the family $K^{n}$, $n\in \mathbb{N}$ of all $f, f(0)=0, Df(0)=I$, which map biholomorphically the unit ball $\mathbb{B}^{n}$ onto convex domains in $\mathbb{C}^{n}$. Several authors generalized the well-known classical inequality $(1+|z|)^{-2}\le |f'(z)|\le (1-|z|)^{-2}, z\in \mathbb{B}^{1}$, onto $n$-dimensional case; they have also declared that their inequalities are exact. In fact, in many cases the statemements were false. The intention of the paper is to indicate such cases

UDC: 517.55



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024