RUS  ENG
Full version
JOURNALS // Proceedings of Institute of Mathematics and Mechanics of the Azerbaijan National Academy of Sciences // Archive

Proc. of Institute of mathematics and mechanics, 2015, Volume 41, Issue 2, Pages 119–123 (Mi pazan19)

A sufficiency condition for the weighted Poincare's type inequality

Vafa A. Mamedova

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku

Abstract: In this paper, we prove a sufficiency condition on the Poincare's type weighted inequality

\begin{equation} \notag \left(\int _{\Omega }\left|f\right|^{q} \vartheta dx \right)^{1/q} \le C\left(\int _{\Omega }\left|\nabla f\right|^{p} dx \right)^{1/p}, \quad q\geq p>1 \end{equation}
in a convex bounded domain $\Omega$ and general weight function $v\in L^{1,loc}.$

MSC: 35A23, 26D10,35J15, 35J70

Received: 08.07.2015
Accepted: 26.11.2015

Language: English



© Steklov Math. Inst. of RAS, 2025