Proc. of Institute of mathematics and mechanics, 2015, Volume 41, Issue 2, Pages 119–123
(Mi pazan19)
|
A sufficiency condition for the weighted Poincare's type inequality
Vafa A. Mamedova Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
Abstract:
In this paper, we prove a sufficiency condition on the Poincare's type weighted inequality
\begin{equation} \notag
\left(\int _{\Omega }\left|f\right|^{q} \vartheta dx \right)^{1/q} \le C\left(\int _{\Omega }\left|\nabla f\right|^{p} dx \right)^{1/p}, \quad q\geq p>1
\end{equation}
in a convex bounded domain
$\Omega$ and general weight function
$v\in L^{1,loc}.$
MSC: 35A23,
26D10,
35J15,
35J70 Received: 08.07.2015
Accepted: 26.11.2015
Language: English
© , 2025