Abstract:
The results of the investigation of discrete models of physical-chemical kinetic processes are presented in a systematic form. The models are extensions of the classical fon-Neumann Cellular Automaton (CA), differing from it in two points: 1) transition functions are allowed to be probabilistic, and 2) not only synchronous, but asynchronous and composed modes of functioning may be used. Mathematical background of the models is based on the formalisms of the “Parallel Substitution Algorithm”. Validity conditions and parallel implementation efficiency for synchronous and asynchronous CA-models are studied. All models are illustrated by the results of computer simulation of physical-chemical kinetics on micro- and nano-levels.