RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2011 supplement № 4, Pages 11–12 (Mi pdm300)

This article is cited in 2 papers

Theoretical Foundations of Applied Discrete Mathematics

Statistical independence of the Boolean function superposition

O. L. Kolcheva, I. A. Pankratova

Tomsk State University, Tomsk

Abstract: It is proved here that if a Boolean function $f(x,y)$ is statistically independent on the variables in $x$, then the same is true for any Boolean function $g(f(x,y),z)$, but this may not be so for a superposition $g(f_1(x,y),\dots,f_s(x,y),z)$ where $s\geq2$ and every function $f_1(x,y),\dots,f_s(x,y)$ is statistically independent on $x$.

UDC: 519.7



© Steklov Math. Inst. of RAS, 2025