RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2013 Number 1(19), Pages 117–124 (Mi pdm398)

Computational Methods in Discrete Mathematics

On the upper bound for the density of any injective vector

D. M. Murin

P. G. Demidov Yaroslavl State University

Abstract: In this work, the Stern's sequence $b_1 = 1,$ $b_2 = 1,$ $b_3 = 2,$ $b_4 = 3,$ $b_5 = 6,$ $b_6 = 11,$ $b_7 = 20,$ $b_8 = 40, \ldots$ is considered, and the upper and lower bounds for $b_i$ are determined. Supposing that the vector $(a_1, \ldots, a_r)$, where $r \geq 4,$ $a_1 = b_r$, $a_2 = b_r + b_{r - 1}$, $\ldots$, $a_r = \sum\limits_{i = 1}^r b_i$, is the injective one having the least maximum element among all other injective vectors of length $r$, the upper bound for density of any injective vector is stated.


Keywords: density of injective vector, Stern's sequence.

UDC: 511



© Steklov Math. Inst. of RAS, 2024