Abstract:
Some important properties of objects simulated by nonnegative matrices (graphs) are revealed when their submatrices are positive (subgraphs are complete). For this reason, the primitiveness and the exponent of a matrix (graph) are generalized to the local primitiveness and to the quasiprimitiveness of nonnegative matrices and graphs. Conditions for matrix local primitiveness and quasiprimitiveness are obtained. A relation between local exponent and exponent is established.
Keywords:exponent, local exponent, local subexponent, local quasiexponent, primitive matrix, local primitiveness.