RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2014 Number 3(25), Pages 111–116 (Mi pdm472)

Computational Methods in Discrete Mathematics

FP//LINSPACE evaluation of real Lambert W-function $W_0$

M. A. Staritzyn, S. V. Yakhontov

St. Petersburg State University, St. Petersburg, Russia

Abstract: In the paper, we construct FP//LINSPACE algorithmic analog of real Lambert W-function $W_0(x)$ on segment $[-(re)^{-1},(re)^{-1}]$ of FP//LINSPACE algorithmic real numbers, where $r$ is a rational number, $r>4/3$ (any such rational number is suitable). To construct algorithmic analog of real Lambert W-function $W_0(x)$, we consider algorithm WLE for the evaluation of dyadic rational approximations of the function on segment $[-(re)^{-1},(re)^{-1}]$ on Turing machine using polynomial time and linear space. Algorithm WLE is based on the Taylor series expansion of the function; it is shown that the Taylor series of real Lambert W-function $W_0(x)$ on segment $[-(re)^{-1},(re)^{-1}]$ converges linearly. This fact is used in the algorithm.

Keywords: real Lambert W-function $W_0$, algorithmic real functions, Turing machine, polynomial time complexity, linear space complexity.

UDC: 510.25+510.52+519.688



© Steklov Math. Inst. of RAS, 2024