RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2017 Number 36, Pages 5–12 (Mi pdm585)

Theoretical Backgrounds of Applied Discrete Mathematics

Random equations over free semilattices

M. A. Vakhrameev

Sobolev Institute of Mathematics, Omsk, Russia

Abstract: In the paper, we study equations in one variable over free semilattices. We show that the average number of solutions of a random equation over a free semilattice of a rank $n$ is equal to $\frac{3^n+2\cdot2^n}{3\cdot2^n}$. It is proved that the average number of irreducible components of algebraic sets defined by equations over a free semilattice of a countable rank is equal to 1.

Keywords: free semilattice, equation, irreducible components.

UDC: 512.53

DOI: 10.17223/20710410/36/1



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024