RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2018 Number 40, Pages 5–9 (Mi pdm624)

Theoretical Backgrounds of Applied Discrete Mathematics

The class of balanced algebraic threshold functions

D. A. Soshin

Technology Federal State Unitary Enterprise "Research Institute Kvant", Moscow, Russia

Abstract: The paper proposes an approach to the construction of a class of balanced algebraic threshold functions (ATF). The function $f$ of $k$-valued logic is called ATF if there are sequences $\mathbf c=(c_0,c_1,\dots,c_n)$, $\mathbf b=(b_0,b_1,\dots,b_k)$ of integers and the natural modulus $m$ such that $f(x_1,x_2,\dots,x_n)=\alpha\Leftrightarrow b_\alpha\leq(c_0+c_1x_1+c_2x_2+\dots+c_n x_n)\mod m<b_{\alpha+1}$ for any $\alpha\in\Omega_k=\{0,1,\dots,k-1\}$. The triple $(\mathbf c;\mathbf b;m)$ is called the structure of the function $f$. The central result of the paper is a class of balanced ATF constructed in the following way: if an ATF $f$ has a structure $(\mathbf c,\mathbf b,m)=((c_0,c_1,c_2,\dots,c_n);(0,p,2p,\dots,kp);kp)$ where $c_i=pq$ and $(q,k)=1$, then this function is balanced. Such functions can be used as coordinate functions of substitutions.

Keywords: algebraic threshold functions, balanced functions.

UDC: 512.13

DOI: 10.17223/20710410/40/1



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024