RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2023 Number 60, Pages 13–29 (Mi pdm799)

Theoretical Backgrounds of Applied Discrete Mathematics

Properties of exponential transformations of finite field

A. A. Gruba

Certification Research Center, Moscow, Russia

Abstract: We consider exponential transformations acting on the set $V_n(p)$ of all vectors of length $n$ over a prime field $P_0 = \text{GF}(p)$ ($p$ is a prime number). For every element $\gamma\in P = \text{GF}(p^n)$ with a minimal polynomial $F(x)$ of degree $n$ over the field $P_0$, consider the mapping $\hat{s} : P \rightarrow P$, where $\hat{s}(0) = 0$ and if $x \neq 0$, then $\hat{s}(x) = \gamma^{\sigma(x)}$, $\sigma : P \rightarrow \{0, 1,\ldots, p^n - 1\}$ is a mapping that matches each element $x\in P$ with the number $\sigma(x) = x_0 + px_1 + \ldots +p^nx_{n-1}$, $\mathbf{x} = (x_0, \ldots , x_{n-1})$ is given by its coordinates in the basis $\mathbf{\alpha}$ of the vector space $P_{P_0}$. Transformation $s = \tau^{-1}\cdot\hat{s}\cdot \varkappa$, where $\tau : P \rightarrow V_n(p)$ matches $x\in P$ to its set of coordinates in the basis $\mathbf{\alpha}$ of $P_{P_0}$ and the mapping $\varkappa : P \rightarrow V_n(p)$ matches $x$ to its set of coordinates in the dual basis $\mathbf{\beta}$ of the basis $\mathbf{\alpha}$, is called an exponential transformation. We prove estimates for the degree of nonlinearity for an exponential transformation $s$: $(p-1)\left(n - \lceil \log_p(n+1) \rceil\right) \leq \deg s \leq n(p-1) - 1$, where $\lceil z \rceil$ is the minimum integer greater or equal to $z$. It is proved that $\deg s = n(p - 1) - 1$ if and only if the system $\gamma/(\gamma - 1), (\gamma/(\gamma-1))^p, \ldots, (\gamma/(\gamma - 1))^{p^{n-1}}$ is a basis of the vector space $P_{P_0}$. We also study some properties of the linear and differential characteristics of the transformation $s$.

Keywords: finite fields, linear recurrence, difference characteristic, linear characteristic.

UDC: 511.321 + 519.111.1

DOI: 10.17223/20710410/60/2



© Steklov Math. Inst. of RAS, 2024