RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2025 Number 68, Pages 5–15 (Mi pdm869)

Theoretical Backgrounds of Applied Discrete Mathematics

On the order of smoothness of the smallest concave extension of a Boolean function

D. N. Barotova, R. N. Barotovb

a Financial University under the Government of the Russian Federation, Moscow, Russia
b Khujand state university named after academician Bobojon Gafurov, Khujand, Tajikistan

Abstract: In this paper, we study the order of smoothness of $f_{NR}(x_1,x_2,\ldots ,x_n)$ — the least concave extension on $[0,1]^n$ of an arbitrary Boolean function $f_B(x_1,x_2,\ldots ,x_n)$. We prove that if the Boolean function $f_B(x_1,x_2,\ldots ,x_n)$ essentially depends on at most one variable, then on $[0,1]^n$ its least concave extension $f_{NR}(x_1,x_2,\ldots ,x_n)$ is infinitely differentiable, otherwise the extension $f_{NR}(x_1,x_2,\ldots ,x_n)$ on $[0,1]^n$ is only continuous. We demonstrate how the least concave extension can be used to solve systems of Boolean equations.

Keywords: concave extension of a Boolean function, Boolean function, concave function, global optimization, local extremum.

UDC: 512.563+519.85+517.518.244

DOI: 10.17223/20710410/68/1



© Steklov Math. Inst. of RAS, 2025