RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2015 Issue 8, Pages 6–8 (Mi pdma204)

Theoretical Foundations of Applied Discrete Mathematics

MacMahon's statistics properties on sets of words

L. N. Bondarenkoa, M. L. Sharapovab

a Penza State University, Penza
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow

Abstract: Properties of MacMahon's statistics of $\mathrm{maj}$ and $\mathrm{inv}$ are considered on three sets of words over $\{1,\dots,n\}$: 1) permutations of degree $n$; 2) all words of length $n$; 3) concave permutations of degree $n$. New recursive descriptions of the generating polynomials of couples $\mathrm{(des,maj)}$ and $\mathrm{(des,inv)}$ are obtained on sets 1 and 3; the corresponding recursive descriptions on the set 2 are only obtained for $\mathrm{(des,maj)}$ and for statistics $\mathrm{inv}$. On the sets 1 and 2, these recursive descriptions are used for another proof of the known MacMahon's theorem about the coincidence of distributions of $\mathrm{maj}$ and $\mathrm{inv}$. On the set 2, the statistics of $\mathrm{fas}$ and $\mathrm{cas}$ are defined as special average values of a symbol in a word, $\mathrm{fas}$ and $\mathrm{des}$ are equally distributed, and the theorem of coincidence of distributions of couples $\mathrm{(fas,maj)}$ and $\mathrm{(fas,inv)}$, and also of couples $\mathrm{(cas,maj)}$ and $\mathrm{(cas,inv)}$ is proved.

Keywords: MacMahon's statistics, generating polynomial, recursive description, Euler's statistics.

UDC: 519.1

DOI: 10.17223/2226308X/8/1



© Steklov Math. Inst. of RAS, 2025