RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2015 Issue 8, Pages 20–22 (Mi pdma212)

Theoretical Foundations of Applied Discrete Mathematics

On degree structure of graphs

V. M. Fomichevab

a Financial University under the Government of the Russian Federation, Moscow
b "Security Code", Moscow

Abstract: The paper presents some properties of degree structure for different classes of digraphs and describes degree structure for primitive digraphs with $n$ vertices and $n+1$ and $n+2$ arcs. For any integer $n\ge5$ and $k\in\{2,\dots,n-3\}$, the existence of a minimal primitive digraph with $n$ vertices, $n+k$ arcs and degree structure $\{(1,1)^{n-1},(k+1,k+1)^1\}$ is shown.

Keywords: minimal primitive graph, graph degree structure.

UDC: 519.6

DOI: 10.17223/2226308X/8/7



© Steklov Math. Inst. of RAS, 2024