RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2017 Issue 10, Pages 96–99 (Mi pdma327)

This article is cited in 2 papers

Mathematical Methods of Cryptography

On characteristics of local primitive matrices and digraphs

V. M. Fomichevabcd

a Financial University under the Government of the Russian Federation, Moscow
b National Engineering Physics Institute "MEPhI", Moscow
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
d "Security Code", Moscow

Abstract: For local primitive $n$-vertex digraphs and matrices of order $n$, the following new characteristics are introduced: a matex is defined as a matrix $(\gamma_{i,j})$ of order $n$, where $\gamma_{i,j}=(i,j)-\exp\Gamma$, $1\leq i,j\leq n$; $k,r$-exporadius $\operatorname{exrd}_{k,r}\Gamma$ is defined as $\min_{I\times J\colon|I|=k,\ |J|=r}\gamma_{I,J}$, where $\gamma_{I,J}=\max_{(i,j)\in I\times J}\gamma_{i,j}$; $k,r$-expocenter is defined as a set $I\times J$, where $|I|=k$, $|J|=r$, $\gamma_{I,J}=\operatorname{exrd}_{k,r}\Gamma$. An approach to build the perfect $s$-boxes of order $k\times r$ using introduced characteristics is proposed. This approach is based on iterations of $n$-dimensional Boolean vectors set transformations with $n>\max(k,r)$. An exemplification of the function construction for perfect $s$-boxes of order $k\times r$ is presented.

Keywords: local primitive matrix (digraph), local exponent.

UDC: 519.1

DOI: 10.17223/2226308X/10/39



© Steklov Math. Inst. of RAS, 2025