Abstract:
The existence of APN permutation in even dimension is an important open problem on cryptographic Boolean functions. In this paper, we consider an algorithm for constructing $2$-to-$1$ APN functions and searching the corresponding affine functions such that their sum is an APN permutation. As a result, $2$-to-$1$ APN functions in 5 and 6 variables are found. These functions are APN permutations.