RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2018 Issue 11, Pages 112–114 (Mi pdma393)

This article is cited in 1 paper

Applied Theory of Coding, Automata and Graphs

About the maximum number of vertices in primitive regular graphs with exponent 3

I. V. Los, M. B. Abrosimov

Saratov State University, Saratov

Abstract: This paper presents some results about the maximum number of vertices in primitive regular graphs with exponent 3. A computational experiment was conducted. We have found the numbers of primitive regular graphs with degree $p\le9$, number of vertices $n\le16$ and exponent 3 for each pair $(n,p)$. We have found the upper bound $n_p$ for the maximum number of vertices in primitive regular graphs with exponent 3 and degree $p$: $n_p\le3(p-1)+2(p-2)(p-1)+(p-2)^2(p+1)$. Also, we have found the exact value of the maximum number of vertices in primitive regular graphs with degree 3 and exponent 3, namely, $n_3=12$.

Keywords: primitive graph, regular graph, the maximum number of vertices.

UDC: 519.17

DOI: 10.17223/2226308X/11/35



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025