RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2020 Issue 13, Pages 41–43 (Mi pdma493)

Discrete Functions

Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation

D. A. Zyubinaabc, N. N. Tokarevaab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c JetBrains Research

Abstract: We propose a simple method of constructing S-boxes using Boolean functions and permutations. Let $\pi$ be an arbitrary permutation on $n$ elements, $f$ be a Boolean function in $n$ variables. Define a vectorial Boolean function $F_{\pi}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ as $F_{\pi}(x) = (f(x), f(\pi(x)), f(\pi^2(x)), \ldots, f(\pi^{n-1}(x)))$. We study cryptographic properties of $F_{\pi}$ such as high nonlinearity, balancedness, low differential $\delta$-uniformity in dependence on properties of $f$ and $\pi$ for small $n$.

Keywords: Boolean function, vectorial Boolean function, S-box, high nonlinearity, balancedness, low differential $\delta$-uniformity, high algebraic degree.

UDC: 519.7

Language: English

DOI: 10.17223/2226308X/13/13



© Steklov Math. Inst. of RAS, 2025