RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2021 Issue 14, Pages 40–42 (Mi pdma525)

This article is cited in 2 papers

Discrete Functions

$\mathrm{S}$-blocks with maximum component algebraic immunity on a small number of variables

D. A. Zyubinaab, N. N. Tokarevaacb

a JetBrains Research
b Novosibirsk State University
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Let $\pi$ be a permutation on $ n $ elements, $f$ be a Boolean function in $n$ variables. Define a vector Boolean function $F_\pi:\mathbb{F}_2^n\rightarrow\mathbb{F}_2^n$ as $F_\pi(x) = (f(x), f(\pi(x)), \cdots, f (\pi^{n-1}(x))))$. In this paper, we study the component algebraic immunity of the vector Boolean function $F_\pi$ as a function of the Boolean function $f$ and the permutation $\pi$ for $n = 3, 4, 5$. We obtain complete sets of Boolean and, partly, vector Boolean functions with maximum algebraic immunity in $3, 4$ and $5$ variables. If the function $F_\pi$ has maximum algebraic immunity, then the permutation $\pi$ is full cycle.

Keywords: Boolean function, vector Boolean function, algebraic immunity, component algebraic immunity.

UDC: 519.7

DOI: 10.17223/2226308X/14/5



© Steklov Math. Inst. of RAS, 2025