RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2022 Issue 15, Pages 14–17 (Mi pdma569)

Theoretical Foundations of Applied Discrete Mathematics

Diffusion properties of generalized quasi-Hadamard transformations on finite Abelian groups

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of Russian Federation
b National Engineering Physics Institute "MEPhI", Moscow

Abstract: In this paper, we introduce a generalization of quasi-Hadamard transformations on a finite abelian group $X$. For $X = \mathbb{Z}_{2^m}$, it includes the pseudo-Hadamard transformation employed in block ciphers Safer and Twofish, and the quasi-Hadamard transformations proposed by H. Lipmaa. For bijective generalized quasi-Hadamard transformations, we describe diffusion properties of imprimitivity systems of regular permutation representations of additive groups $\mathbb{Z}_{2^m}^2$ and $\mathbb{Z}_{2^{2m}}$. We describe a set of generalized quasi-Hadamard transformations having the best diffusion properties of the imprimitivity systems. We also give conditions such that some generalized quasi-Hadamard transformations have bad diffusion properties.

Keywords: Safer block cipher family, Twofish block cipher, pseudo-Hadamard transformation, quasi-Hadamard transformation, imprimitivity system, regular permutation representation, primitive group.

UDC: 519.7

DOI: 10.17223/2226308X/15/4



© Steklov Math. Inst. of RAS, 2024