RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2022 Issue 15, Pages 108–109 (Mi pdma590)

Applied Theory of Coding and Graphs

A series of formulas for Bhattacharya parameters in the theory of polar codes

S. G. Kolesnikovab, V. M. Leontievb

a M. F. Reshetnev Siberian State University of Science and Technologies
b Siberian Federal University, Krasnoyarsk

Abstract: In the theory of polar codes, the Bhattacharya parameters are used to determine the positions of frozen and information bits. The parameters characterize the polarization rate of the channels $W_N^{(i)}$ constructed in a special way from the original channel $W$, here $1 \leqslant i \leqslant N$, $N=2^n$, and $n=1,2, \ldots$ is the length of the code. It is assumed that the $i$-th bit of a message is transmitted over the channel $W_N^{(i)}$, and the Bhattacharya parameter $Z(W_N^{(i)})$ can be interpreted as the noise level of $W_N^{(i)}$. $W$ is a model of a physical transmission channel. If $W$ is a classical binary memoryless symmetric channel, the currently known formulas for the Bhattacharya parameters contain $2^N=2^{2^n}$ terms. We have obtained the formulas for the series of channels $W_N^{(N-2^k+1)}$, $k=0,1, \ldots, n-1$, that contain $2^{(n-k+1)2^k}$ terms. Some assumptions are also given for further simplification of the obtained formulas.

Keywords: polar code, Bhattacharya parameter.

UDC: 519.72

DOI: 10.17223/2226308X/15/25



© Steklov Math. Inst. of RAS, 2025