RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2024 Issue 17, Pages 16–19 (Mi pdma634)

Theoretical Foundations of Applied Discrete Mathematics

On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of Russian Federation
b National Engineering Physics Institute "MEPhI", Moscow

Abstract: Let $V_n (2^m)$ be an $n$-dimensional vector space over $\mathbb{F}_{2^{m}}$ and ${\overline{V}}_n^l(2^m)$ consists of all pairwise different elements from the Cartesian product $V_n^l(2^m)$, $l,n,m \in \mathbb{N}$, $n,l \geq 2$. We consider permutations from the symmetrical group $S(V_n (2^m))$ acting coordinate-wise on vectors from $V_n^l(2^m)$, and partitions of ${\overline{V}}_n^l(2^m)$, which are generalizations of classical differential partitions ($l = 2$) and are used in high order differential, truncated differential, impossible differential, polytopic and multiple differential techniques. For a partition ${\mathbf{W}}^{(n,l)}$ of ${\overline{V}}_n^l(2^m)$, we study the minimum Hamming distance $\text{d}_{{\mathbf{W}}^{(n,l)}}(s)$ between a permutation $s$ and the set $\mathrm{IG}_{\mathbf{W}}$ consisting of all permutations from $S(V_n (2^m))$ preserving ${\mathbf{W}}^{(n,l)}$. We describe properties of permutations $s$ with the maximum distance $\text{d}_{{\mathbf{W}}^{(n,l)}}(s)$, which perfectly diffuse ${\mathbf{W}}^{(n,l)}$. We get a criterion of perfect diffusion of ${\mathbf{W}}^{(n,l)}$ for any $l\in \mathbb{N}$. We show the connection between permutations perfectly diffusing ${\mathbf{W}}$, APN-permutations, AB-permutations, and differentially $2r$-uniform permutations, $r \ge 1$.

Keywords: perfect diffusion, imprimitive group, wreath product, differentially $d$-uniform permutation, APN-permutation, AB-permutation, differential technique, polytopic technique.

UDC: 519.7}\maketitle

DOI: 10.17223/2226308X/17/4



© Steklov Math. Inst. of RAS, 2024