RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2024 Issue 17, Pages 24–27 (Mi pdma636)

Discrete Functions

On the number of the closest bent functions to some Maiorana–McFarland bent functions

D. A. Bykova, N. A. Kolomeetsb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We consider the numbers of bent functions that are closest to some bent functions from the Maiorana — McFarland class $\mathcal{M}_{2n}$, specifically, the numbers near to their lower $\mathcal{l}_{2n} = 2^{2n + 1} - 2^n$ and tight upper $\mathcal{L}_{2n}$ bounds. For a bent function $f(x, y) = \langle x, \sigma(y)\rangle \oplus \varphi(y) \in \mathcal{M}_{2n}$, where $\sigma$ is a function based on the inverse function of elements of the finite field, the number of closest bent functions is calculated for identically zero $\varphi$. Moreover, it is shown that this number is less than $\mathcal{l}_{2n} + 82(2^n - 1)$ and asymptotically equals to $\mathcal{l}_{2n} + o(\mathcal{l}_{2n})$ for some $\varphi$. An explicit formula for the number of bent functions closest to $f(x, y) = \langle x, y\rangle \oplus y_1 y_2 \dots y_m$, where $3 \leq m \leq n$, has been derived. The values for $m = 3$ and $m = n$ are equal to $o(\mathcal{L}_{2n})$ and $\dfrac{1}{3}\mathcal{L}_{2n} + o(\mathcal{L}_{2n})$ respectively as $n \to \infty$. A complete classification of $\mathcal{M}_6$ using the number of closest bent functions is obtained.

Keywords: affine subspaces, bent functions, Maiorana — McFarland class, minimal distance, the closest functions.

UDC: 519.7

DOI: 10.17223/2226308X/17/6



© Steklov Math. Inst. of RAS, 2024