RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2025 Issue 18, Pages 99–102 (Mi pdma694)

Discrete Functions

On the curvature of functions over finite fields

A. A. Panpurin


Abstract: The curvature $\sigma(f)$ of a function $f$ over the finite field $P=\text{GF}(q)$ is defined as the sum of the modules of the coefficients of the function's expansion in the basis of characters. In this paper, an estimate of the curvature is obtained. It is proven that for a function $f: P^n\rightarrow P$ in $n$ variables the following holds: $1\le\sigma(f)\le q^{{n}/{2}}$. The conditions for attainability of estimates have been established. Also, the curvature of various classes of functions over finite field is investigated. Let $g(x_1,\ldots,x_n) = \pi(x_1) + f(x_2,\ldots,x_n)$, where $f:P^{n-1}\rightarrow P$ and $\pi$ is a permutation defined by a polynomial $\pi(x) = x^k + c_{k-1}x^{k-1} + \ldots+c_1x+c_0$, $(k,p)=1$, $c_i\in P$, $i\in \{0,\ldots, k-1\}$. It is shown that $\sigma(g)=\sigma(f)$ for $k=1$ and $\sigma(g)\le\sigma(f)(k-1)(q-1)/\sqrt{q}$ for $k>1$. For the function $g(x_1, \ldots, x_n)=x_n^{q-1}f_1(x_1,\ldots, x_{n-1})+(1-x_n^{q-1})f_2(x_1,\ldots, x_{n-1})$, it is proven that $\sigma(g) \le (2q-2)\sigma(f_1)/q+\sigma(f_2)$.

Keywords: curvature of function, finite field, discrete functions.

UDC: 519.716.32+512.547

DOI: 10.17223/2226308X/18/22



© Steklov Math. Inst. of RAS, 2025