RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2012 Issue 1(10), Pages 97–100 (Mi pfmt11)

This article is cited in 1 paper

MATHEMATICS

Hermitian approximation of two exponents

N. V. Rjabchenko, A. P. Starovoitov, G. N. Kazimirov

F. Scorina Gomel State University, Gomel

Abstract: We study the asymptotic properties of diagonal Pade–Hermite approximants $\{\pi^{j}_{2n,2n}(z;e^{j\xi;})\}^{2}_{j=1}$ for a system consisting of functions $\{e^z,e^{2 z}\}$. In particular, we determine the asymptotic behavior of the differences $e^{jz} - \pi^j_{2n,2n}(z; e^{j\xi})$ for $j =1,2$ and $n \to\infty$ for any complex number $z$. The obtained results supplement research of Pade, Perron, Braess and A.I. Aptekarev dealing with the study of the convergence of joint Pade approximants for systems of exponents.

Keywords: perfect system of functions, joint Pade approximant, Pade–Hermite approximants, asymptotic equality, Hermite integrals.

UDC: 517.538.52+517.538.53

Received: 04.11.2010



© Steklov Math. Inst. of RAS, 2025