RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2013 Issue 1(14), Pages 81–87 (Mi pfmt227)

This article is cited in 10 papers

MATHEMATICS

Hermite–Pade approximants of the system Mittag-Leffler functions

A. P. Starovoitov

F. Scorina Gomel State University, Gomel

Abstract: The paper deals with asymptotic properties of Hermite integrals. In particular, the asymptotics of diagonal Hermite–Pade approximations $\pi^j_{kn,kn}(z;e^{j\xi})$ for the system of exponents $\{e^{jz}\}_{j=1}^k$ are determined when $j=1,2,\dots,k$ and $n\to\infty$. Similar results are proved for the system of confluent hypergeometric functions $\{_1F_1(1;\gamma;jz)\}_{j=1}^k$.

Keywords: Hermite integrals, joint Pade approximations, Hermite–Pade approximations, asymptotic equality.

UDC: 517.538.52+517.538.53

Received: 23.01.2013



© Steklov Math. Inst. of RAS, 2025