RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2016 Issue 2(27), Pages 61–67 (Mi pfmt443)

This article is cited in 1 paper

MATHEMATICS

Asymptotics of Hermite–Padé approximation of exponential functions with complex multipliers in the exponent

A. P. Starovoitov, G. N. Kazimirov, M. V. Sidorzov

F. Sсorina Gomel State University

Abstract: Asymptotic properties of the diagonal Hermite–Padé approximants of type I for the system of exponentials $\{e^{\lambda_pz}\}^k_{p=0}$, in which $\lambda_0=0$, while the rest $\lambda_p$ are the roots of the equation $\xi^k=1$ are studied. The theorems complement known results of P. Borwein, F. Wielonsky, H. Stahl, A. V. Astafyeva, A. P. Starovoitov, obtained for the case, where the $\{\lambda_p\}^k_{p=0}$ — different real numbers.

Keywords: exponential system, Hermite–Padé approximants, asymptotic equality, Laplace's method, saddle point method.

UDC: 517.538.52+517.538.53

Received: 14.03.2016



© Steklov Math. Inst. of RAS, 2025