RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2018 Issue 2(35), Pages 60–68 (Mi pfmt569)

MATHEMATICS

Some criteria for the nonsimplicity of finite groups

E. M. Palchik, S. Yu. Bashun

Polotsk State University, Novopolotsk

Abstract: Let $|G|=\prod_{i=1}^n p_i^{\alpha_i}$, where $p_i$ are prime numbers, $p_i\ne p_j$ for $i\ne j$. Let $\pi(G)=\{p_1,\dots,p_n\}$, $s\in\pi(G)$ and let $\mathfrak{T}$ is the set of some Sylow subgroups of the group $G$, that are taken one at a time for every $p_i\in\pi(G)\setminus\{s\}$, $i=\overline{1,n-1}$. It is proved that if every subgroup from the set $\mathfrak{T}$ normalises some non-identity $s$-subgroup from $G$, $s>3$, then $G$ has solvable normal subgroup $R$ and $s$ divide $|R|$.

Keywords: finite group, Sylow subgroup, $s$-solvable group.

UDC: 512.542

Received: 21.12.2017



© Steklov Math. Inst. of RAS, 2025