RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2019 Issue 1(38), Pages 50–55 (Mi pfmt622)

MATHEMATICS

On some characterization of general Frattini subgroup of finite soluble group

S. F. Kamornikova, O. L. Shemetkovab

a F. Scorina Gomel State University
b Plekhanov Russian University of Economics, Moscow

Abstract: Let $G$ be a finite soluble group, $\theta$ be a regular subgroup $m$-functor, and $\Phi_\theta(G)$ be the intersection of all maximal $\theta$-subgroups of $G$. Let $n$ be the length of a $G$-series of the group $\mathrm{Soc}(G/\Phi_\theta(G))$, and $k$ be the number of central $G$-chief factors of this series. We prove that in this case $G$ contains $4n-3k$ maximal $\theta$-subgroups whose intersection is $\Phi_\theta(G)$.

Keywords: finite soluble group, maximal subgroup, Frattini $\theta$-subgroup.

UDC: 512.542

Received: 02.01.2019



© Steklov Math. Inst. of RAS, 2024