RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2019 Issue 2(39), Pages 54–60 (Mi pfmt637)

MATHEMATICS

On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$

V. V. Beniash-Kryvetsa, Y. A. Yushkevichb

a Belarusian State University, Minsk
b M. Tank Belarusian State Pedagogical University, Minsk

Abstract: Generalized tetraedron groups have a presentation of the form
$$ \Gamma=\left\langle x_1,x_2,x_3\mid x_1^{k_1}=x_2^{k_2}=x_3^{k_3}=R_{12}(x_1,x_2)^l=R_{23}(x_2,x_3)^m=R_{13}(x_1,x_3)^n=1\right\rangle. $$
There exists a Rosenberger’s conjecture that the Tits alternative holds for generalized tetrahedron groups. This conjecture is open for groups of the form $\left\langle x_1,x_2,x_3\mid x_1^{k_1}=x_2^{k_2}=x_3^{k_3}=R_{12}(x_1,x_2)^2=(x_1^\alpha x_3^\beta)^2=(x_2^\gamma x_3^\delta)^2=1\right\rangle$, $\frac1{k_1}+\frac1{k_2}+\frac1{k_3}\geqslant\frac12$. In this paper, a number of sufficient conditions are found for fulfillment the Tits alternative for groups
$$ \Gamma=\left\langle a,b,c\mid a^2=b^n=c^2=R(a,b)^2=(b^\alpha c)^2=(ac)^2=1\right\rangle. $$


Keywords: generalized tetraedron group, Tits alternative, free group, almost solvavle group.

UDC: 512.543

Received: 11.03.2019



© Steklov Math. Inst. of RAS, 2025