RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2022 Issue 1(50), Pages 89–93 (Mi pfmt832)

MATHEMATICS

Polyorthogonal systems of functions

A. P. Starovoitov

Francisk Skorina Gomel State University

Abstract: This article introduces multiple analogs of determinants and Gram matrices, studies the possibility of constructing polyorthogonal systems of functions using the process of polyorthogonalization of an arbitrary finite subsystem of a linearly independent system of functions $\varphi=\{\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x), \dots\}$ in Pre-Hilbert function spaces generated by measures $\mu_1,\dots,\mu_k$. The proven statements are a generalization of the Gram–Schmidt orthogonalization theorem.

Keywords: Padé approximations, polyorthogonal polynomials, normal index, perfect system, Gram determinant.

UDC: 517.538.52+517.538.53

Received: 17.12.2021

DOI: 10.54341/20778708_2022_1_50_89



© Steklov Math. Inst. of RAS, 2025