Abstract:
The results of investigation of thermoelectric materials fabricated by spark plasma sintering and based on Si$_{1-x}$Ge$_ x$ solid solutions doped with Sb to a concentration of 0–5 at % are presented. It was found that, at Sb concentration below 1 at %, efficient doping of the solid solution was carried out during the sintering process, which allowed us to form a thermoelectric material with a relatively high thermoelectric figure of merit. An increase in the concentration of antimony in the range of 1–5 at % led to a change in the mechanism of doping, which resulted in an increase in the resistance of materials and the segregation of Sb into large clusters. For such materials, a significant decrease in the Seebeck coefficient and thermoelectric figure of merit was noted. The highest obtained thermoelectric figure of merit (ZT) with Sb doping was 0.32 at 350$^{\circ}$C, which is comparable with known analogues for the Ge$_ x$ Si$_{1-x}$ solid solution.