Abstract:
The structure of the optical spectra related to the resonant interaction of quasi-two-dimensional excitons and localized plasmons is investigated theoretically. The constant of plasmon–exciton coupling is estimated in a model considering a semiconductor quantum well close to a layer of metal nanoparticles in an adjacent dielectric medium. Numerical calculations carried out for GaAs/Ag and ZnO/Al nanosystems indicate that near the plasmon–exciton resonance the spectrum features a double-peak structure which exhibits the plasmon-excitonic anticrossing behavior upon detuning from exact resonance.